Appendix 13: New Features in v 3.9 (A & B) Enterprise Edition

The Enterprise Edition of Engine Analyzer Pro has some very advanced features the typical user would not use. These include:

- You can use a full compressor map to define the performance of a turbocharger compressor. Figs A70 and A71.
- You can specify a particular turbocharger boost level, intake manifold temperature (after the turbocharger compressor), and exhaust backpressure level. This gives you more freedom to simulate some particular situation which may be difficult to simulate using the turbocharger compressor and turbine model specs in the program. Fig A72.
- You can view the compressor map when calculations are being performed to see what area of the map is being used. Fig A73.
- You can use a full compressor map to define the performance of a centrifugal supercharger compressor. Figs A74 and A75.
- You can design a system where a centrifugal supercharger feeds into a roots blower supercharger. Fig A76.
- You can interface to the Compression Ratio Calculator program and transfer data back and forth between them. Figs A77 through A80.
- You can run a part throttle performance "map". This map can be useful for calibrating electronic engine controllers, or just understanding part throttle performance. Fig A81 and A82.
- There is a new Preference which lets you choose a different language for certain labels in the program. Fig A83.
- Two new Preferences are provided to adjust the valve train dynamics calculations. One allows you to increase the stiffness of the lifter/cam interface. The other allows you to increase the stiffness of the rocker arm for Overhead Rocker Arm styles of valve trains. The factor you pick is multiplied by the default stiffness. For example, if you pick 1.5, the default stiffness is increased 50%. Fig A83.
- A Preference has been added to allow for adjusting intake runner wall friction for the Intake Runner and Port. The program picks a certain amount of wall friction based on manifold type, Runner Flow Coef, etc. Your choice here will change it by the percentage you pick. Fig A83.
- A Preference has been added to let you adjust how much valve toss (separation between follower and cam) will be called Valve Toss in the tabular results. The default used by the program for many years. is .020". If the program sees more than .020" separation between cam lobe and follower, it is flagged as Valve Toss in the calculated results. Your choices will let you pick a certain percentage of the lobe's maximum lift. Fig A83.

New Features in v3.9 B

New features added in v3.9 B include:

You can now import a .jpg graphics file of a turbo map to assist in translating the data from the .jpg file into the tabular data required by the program. Fig A84 - A86.

Additional features have been added to the Compressor Map screen to allow for easier entering and editing of data. Fig A87.

You can now enter details about the valve springs to simulate valve spring dynamics. These inputs are very similar to the inputs used in Performance Trends' Spring Wiz program. Check out our Spring Wiz program for more info on the specifications used for the Valve Spring Dynamics inputs. (At this time, the inputs on this screen must be entered in English units.)

-igure A70 Using a Full C	Compressor Map for Turbocha	rgers
		Note that some specs are
Turbocharger Specs for: RAJAY-3	0.0F	not needed when you
1st Stage Turbocharger Specs	General Turbocharger Specs	choose to use a Map.
	Throttle Location Draw Through	
-	Max Boost Limit PSI 10	
	# Turkes (Channel Line)	
	# Turbos/Stages 1 Single Turb	
Surge LFM 180	Intercooler Eff, % 0% No Interc	cooler 👤
Exh Turbine Eff, % 65% Typical	Intercooler CFM Rating 100	
Turbine Nozzle Dia, in 1.1	Clc Wastegate Is Before Interco	poler 🔽
	Comments	Current Map File Name
Force to Boost Conditions	Approximate specs for single R	ajay 300F 📉
Boost, psi Int Temp I	Exh Pres	ate.
Force These Conditions No	/	Click on View for screen
Full Compressor Map		below, to enter, open or
Use Compressor Map	File @C:\VB98\projects6\EAPROX\CENTMAP\G	ar View euit Map settings.
Help		
CFM where the surge line intersects pressure	ratio of 2.0. p 59	
	Set to Yes and then yo	ou can choose a Map File to
	describe the turbocha	rger compressor.
UK Help Ka	strieve from Libi	
S SIC 11-5 I C CTA244 F0		he Map will be and how many "cells" you ave to fill in for the Map, the smaller the Step Size", the more cells.
SVC Map [Garrett G11241 SU	Tran.cmp	
Pressure Ratio Range (rows) 🦯	CFM Flow Range (columns) 5	Surge CFM 35
Highest Pressure Ratio 5.00	Highest CFM 290	Update Graph used with Map and
Pres. Ratio Step Size 0.125	CFM Step Size 14.524	drawn on Map.
Preview: 1.00, 1.13, 1.25, 5.00	Preview: 15 29 44 290	Pript Table
Pres Ratio 15 29 44 5	58 73 87 🔨 🔤 🗸	305 The Granh is not
1.00 Eff% 45 45 50 5	50 50 50 ^{5.0}	automatically
1.13 Eff% 48 50 55 5	x5 55 55	80 updated with
1 25 5 62 55 62 4		+++++++ 75 each change you
1.25 Eff% 50 55 60 6	ND 68 68 1 111111111111111111111111111111	
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6	55 68 68 68 68 68 68 68 68	70 make. Click here
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6	50 68 68 58 70 73 58 71 74	70make. Click here to update the
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6	55 68 68 58 70 73 58 71 74 58 71 74	70make. Click here to update the graph.
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6 1.88 Eff% 55 60 65 6	55 68 68 58 70 73 58 71 74 58 71 74 58 70 74	70656055
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6 1.88 Eff% 55 60 65 6 1.88 Eff% 55 60 65 6 2.00 Eff% 55 60 65 6	55 68 68 58 70 73 58 71 74 58 71 74 58 70 74 58 69 72	7065605550
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6 1.88 Eff% 55 60 65 6 2.00 Eff% 55 60 65 6 2.13 Eff% 55 60 65 6	55 68 68 58 70 73 58 71 74 58 71 74 58 70 74 58 69 72 55 68 72 55 68 72	706560555045
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6 1.88 Eff% 55 60 65 6 2.00 Eff% 55 60 65 6 2.13 Eff% 55 60 65 6 2.25 Eff% 55 60 65 6 2.38 Eff% 55 60 65 6	55 68 68 68 70 73 58 71 74 58 71 74 58 70 74 58 69 72 55 68 72 55 68 72 55 68 72	706560555045Eff%Click on a grid cell to enter the Thermal Efficiency at that
1.25 Eff% 50 55 60 6 1.38 Eff% 55 60 65 6 1.50 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.63 Eff% 55 60 65 6 1.75 Eff% 55 60 65 6 2.00 Eff% 55 60 65 6 2.13 Eff% 55 60 65 6 2.25 Eff% 55 60 65 6 2.38 Eff% 55 60 65 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	706560555045Eff%Click on a grid cell to enter the Thermal Efficiency at that Pressure Ratio and
1.25 Eff% 50 55 60 65 61 1.38 Eff% 55 60 65 65 65 65 1.50 Eff% 55 60 65 65 65 65 65 1.63 Eff% 55 60 65 65 65 65 65 1.75 Eff% 55 60 65 65 65 65 65 2.00 Eff% 55 60 65 65 65 65 65 2.13 Eff% 55 60 65 65 65 65 65 2.25 Eff% 55 60 65 65 65 65 65 0K (keep changes) Cancel Charges) Cancel Charges Cancel Charges Cancel Charges	55 68 68 58 70 73 58 71 74 58 71 74 58 79 72 55 68 72 1.0 1.0 0pen	70 make. Click here to update the graph. 60 55 50 Click on a grid cell to enter the Thermal Efficiency at that Pressure Ratio and CFM flow, then press <enter> to</enter>

Figure A72 User Specified Turbo Boost and Backpressure						
Turbocharger Specs for: RAJAY-30.0F						
	Exhaust pressure is typically close to the Boost pressure. In a very efficient, turbo which is well matched to the engine, the exhaust pressure can be less than boost pressure. In an inefficient system, exhaust pressure will be higher. If you are not sure, set this equal to Boost pressure.					
Force to Boost Conditions Boost, psi Int Temp Exh Pres 100 411 Cla 85 Force These Conditions Yes	es for single Rajay 300F mit on wastegate.					
Help Enter the Intake Boost Pressure you want the program to force into this intake mar produce much more or less boost than this. DK Help Retrieve from Library Sates	Choose Yes and you can produce most any intake and exhaust conditions you want. You will notice that all other turbocharger settings are not shown to indicate they will have not affect on the results, just these 3 inputs.					
Calc Intake Temperature Calc Intake Temperature, Deg F 411 Dutside Air Temperature, Deg F 77	lick on this Clc button for the screen to the left, where bu can enter some inputs about the turbo system and et a good estimate of the Intake Air Temperature bing into the engine after the turbocharger.					
Barometric Pres, inches HG 29.66 Intake Conditions 00 Boost Level, PSI 100 Turbo Efficiency 70% Good Turbo Efficiency, % 1 Intercooler Yes Intercooler Effectiveness, % 40 Use Calc Value Help Cancel Print						

Figure A78 "Talking" to the Compression Ratio Calculator, Cylinder Head Specs						
Cylinder Head Specs for: PROD-GT4.0 Intake Port Specs # Valves/Ports 1 valve & 1 port Valve Diameter, in 1.8 Avg Port Diameter, in 1.6 Port Length, in 4 Port Vol. 131.8 ccs Avg Port Area 2.01 sq in Single Flow Coefficient 4 Anti-Reversion, % 0 Cic Use Single Flow Coef © Use Flow Table Combustion Chamber Compression Ratio 12.27 Chamber Design Typical Wedge Help Number of intake valves and ports per cylinder, usually 1 valve and 1 port. Click on arrow to pick from list. p 17	Exhaust Port Specs # Valves/Ports 1 valve & 1 port Valve Diameter, in 1.5 Avg Port Diameter, in 1.4 Port Length, in 2.5 Port Vol. 631 ccs Avg Port Area 1.54 sq in Single Flow Coefficient 4 Use Single Flow Coef 0 Use Single Flow Coef 1 ow Table Miscellaneous Pro. However, in the Enterprise Edition, now these inputs are saved when you leave this screen so they can be transferred to the Compression Ratio Calculator program. Production GT-40 heads with flow bench					
OK Help See Layout Retrieve fr	DIT Library Save to Library Prin Click here to start up the Compression Ratio Calculator program shown below.					
Cate Compression Ratio Calc Compression Ratio 12.27 Total Chamber CCs 63.9 Chamber Specs 6 Chamber CCs in Head 46 Piston Dome CCs 5 Gasket Thickness, in .032 Gasket Bore Dia, in 4.022 Deck Height Clearance, in .024 Ring Land Specs ▼es Include Ring Land Gap Yes Piston Outside Diameter, in .26 Piston Outside Diameter, in .26 Piston Outside Diameter, in .395 Notes: This calculation is based on the existing Short Block specs of a Bore = 4 and Stroke = 3.5. If this is incorrect, change these specs before using This menu. Enter a negative (-) Dome CCs for a Piston Dish. Enter a negative (-) Dome CCs for a Piston Dish. Enter a negative (-) Dome CCs for a Piston Dish. Enter a negative (-) Dome CCs for a Piston Dish. Enter a negative (-) Dome CCs for a Piston Dish. Enter a negative (-) Dome CCs for a Piston Dish. Enter a negative (-) Dome Ccs for a Piston Dish. Enter a negative (-) Dome Ccs for a Piston Dish. Enter a negative (-) Dock Height Clearance if the piston goes above the deck at TDC.	Compression Ratio - Performance' Trends Inc:					

Figure A79 Actual Compression Ratio Calculator Program Called from Engine Analyzer Pro Enterprise Edition

Compression Ratio PRO - Perf. Trends File Options Comments Boring/Stroking Help	You will see most all you Analyzer Pro transferred Calculator. Now you car calculations as shown he	Ir numbers from the Engine l over to the Compression Ratio n do any other detailed ere.						
Base Engine Inputs Bore, in 4 Stroke, in 3.5 Clc # of Cylinders 8 Rod Length, in 5.5 Int Valve Closing, deg Clc Deck Height, in 8.672 Chamber/Piston Inputs Chamber CCs in Head Chamber CCs in Head Image: Clc Piston Design Dish Top Piston Dish, ccs 5. Gasket Thickness, in .032 Gasket Bore Dia, in 4.022 Deck Ht Clearance, in .024 Piston Top O.D., in .395 Compression Ht, in 1.398 Plus Features Barometric Pres, "Hg Barometric Pres, "Hg 29.6 Cyl Leakage Typical (production) Turbo or Supercharged No Boost, psi	Calculated ResultsCu. In. 43.98CCs 720.9Liters 0.721Engine Size351.865767.5.767Chamber Size3.963.90.064Compression Ratio12.2712.7Eff. Comp. Ratio12.2712.7Dyn. Comp. Ratio12.2712.7Bore/Stroke Ratio1.143Comp. RatioRod/Stroke Ratio1.5710.056Volume ContributionsCu. In.CCs% of TotalHead Chamber2.80746.71.9Gasket0.4076.6610.4Deck0.3024.947.7Piston Dish0.3055.7.8Piston O.D.0.0811.332.1HelpThe amount of volume in the cylinder head's combustion chamber, measured in cubic centimeters.Max Engine RPM6000Half Big End Wt, gms222Cic3500 ft/min4602 Gs3068 lbs bot load	If things do not "add up" as far as deck height stackup, a message is given as shown here and Deck Height Clearance is adjusted to make it "add up". NOTE: The Engine Analyzer Pro does not force these numbers to "add up" as most do not affect engine performance						
Eck Height Cleanance Adjusted Deck Height Cleanance will be adjusted to be consistent with the current Stroke, Rod Length, Deck Height and Compression Ht. If this is not what you want to have done, click on one of the Calc buttons by the spec you want adjusted to fit the other specs (after you click on OK on this message)								
(This notice given only once for each program startup.) OK When leaving the Compression Ratio Calculator, you are given these 3 options. Calculator.								
eep Your Changes? X This file and all current settings will now be loaded back to the 'Engine Log Book'. Is this what you want to do? Click on 'Cancel' to stop shutting down this Compression Ratio Calculator program. Click on 'No' to return to the Engine Log Book program but abandon any changes you've made in this program. Yes No Cancel								
	If you choose Yes, you will see the Compression Ratio Calculator trans	numbers from the sferred back to the EA Pro.						

			natin	y a i	rait	THIC	me	Call	brati	oni	via	2									
			/	[Clic	k here	e at to	op of	main			Ca	libra	atio	n Map)					
and b					scre	en fo	r the	se op	tions.												
🔏 Engin	e An	alvze	г Рго	v3.9	Per	form	ance	Tren	ds	Engir	n		alib	rati Cu	on Maj	P					
File (engine	e) Ca	de HP	Calc	Calibra	tion Ma	an He	eln Pr	eferen	ices			H	MAP	50	eps, ps	:	Z ps			• •	-
	,		C.	Jaulata	ua Cali		Man		1		- 1		lign	est	мар, ј	psi	Full	Powe	r, WUI		
Open fr	om E	ngine	Ca	libratio	; a Call on Map	Detail	s map	jin	e	Calc I	н	Ľ	.0₩0	est	мар, р	12(4			•	
i [hart (look	Cnoo	n		Curr 351V	entC V-FOF	ompor }.D	nent F	iles –			Kee	p S	pecs Here	's th	H elp e Ma	Ca p De	etails,	Prin which	it is
															basic	ally	the s	tartii	ng and	d endi	ng
🔏 Engine Anal	lyzer P	ro Er	ngine [!	v2.1 3	51W-G1	[4.0]	Test F	esults	[Untitle	d]					press	sure) poir	its a	nd		
🔂 Back Back+9	Save <u>G</u>	raph <u>P</u> r	int Help	File /	ASCIN, File	History	<u>Analy</u> z	e See-B	Engine S	iend Sta	ор				incre	men	its. T	he F	RPMs	which	1
	Cmnt	s													are ru	un a	re se	t the	same	as fo	r
e e	Notes	5				\backslash									WOT	(Wi	de op	en t	hrottle	e) Nulata	
Engine BPM	1000	1500	2000	2500	3000	3500	4080	4500	5000	5500					Perfo	nna nma	nce, ince s	in in Scree	e Calo Pn	uiale	
engilornin		1000	2000	2000	0000	0000	1000	4000	0000	0000									511.		
Brk Tq, ft-lbs	284.21	308.29	321.89	332.44	352.29	358.92	341.86	304.79	257.02	210.09		(Click	on	ASCI	l Fil	e to p	orodu	uce th	e 2	
Brake HP	54.11 14 E	88.05 14 E	122.58	158.24	201.23	239.19	260.37	261.15	244.69	220.01		t	уре	s of	files s	shov	vn in	Figu	re A6	В.	
MAR, psi Vol Eff %	72.8	75.3	78.6	82.3	88.5	92.3	90.9	85.7	76.5	73.7			You	will	be as	ked	for a	file	name	and	
BSFC, Ib/HP-hr	.479	.456	.456	.462	.469	.480	.496	.525	.556	.655		f	olde	er fo	or stori	ng t	he file	es	Then t	he	
Injetr Dty Cyc, %	17.036	26.412	36.764	48.139	62.146	75.586	85.040	90.238	89.456	94.825		F	orog	ran	n will v	vrite	2 file	s, a	".csv"	or	
Inj Plse Wdth, ms	20.443	21.129	22.058	23.107	24.859	25.915	25.512	24.063	21.469	20.689		0	com	ma	separ	atec	l varia	able	file wl	nich	
A/F Mxtr Qlty, %	93.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		ļi	mpc	orts	to Exc	cel, c	or a "	.txt" [file wh	nich is	
Knock Index	2.6	2.3	2.2	1.9	1.9	1.8	1.6	1.3	1.0	.8	1	t	abo	lelii	nited a	and	reads	s bet	ter in		
Spark Advinc, deg Evel Flow, Ib/br	20.2 25.99	22.0 40.15	24.1 55.99	20.4 73.17	25.3 94.46	27.2	28.0	29.9	31.9	33.0 144.12											
FUELFIUW, ID/TI	23.03	40.10	33.00	73.17	34.40	114.03	123.20	137.10	133.37	144.13											
Brk Tq, ft-Ibs	268.57	292.71	306.29	317.75	337.49	345.95	330.63	296.36	248.51	203.65	J		_ [He	re's th	e M	AP fo	r ea	ch		
Brake HP	51.14	83.60	116.64	151.25	192.78	230.54	251.81	253.93	236.58	213.27	1			ser	$ction \cap$	fres	sults	The	first		
MAP, psi	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	/			sec	ction w	i as a	a WO	Tso	n man		
Vol Eff, %	69.7	72.1	75.5	79.3	85.6	89.6	88.5	83.7	74.7	72.1	/			cha	anges	as n	nanif	old v	acuur	n	
BSFC, ID/HP-hr	.484 16 299	.460 25.219	.460 35 300	.465 46.266	.474 60.097	.484	.000 92.959	.527 99 0c0	.062 97 /00	.661 92 701	/			cha	anges.			-			
Ini Plse Wrdth ms	19.555	20.254	21.193	22,255	24.035	25,169	24,857	23.485	20,978	20.247											
A/F Mxtr Qlty, %	93.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0											
Knock Index	2.4	2.2	2.1	1.9	1.8	1.7	1.5	1.3	1.0	.8 /											
Spark Advnc, deg	20.4	22.8	24.4	25.7	26.5	27.4	28.6	30.0	32.2	33.7											
Fuel Flow, Ib/hr	24.77	38.48	53.69	70.48	91.33	111.58	125.94	133.87	132.86	1/41.03											
Brk. T.q., ft-lbs	211.98	232.04	243.80	254.20	271.16	277.60	263.61	233.25	191.09	152.92											
Brake HP	40.36	66.27	92.84	121.00	154.89	185.00	200.77	199.86	181.92	160.14											
MAP, psi	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0 /	12.0											
NOLEIT, %	58.1 512	60.2 495	63.2 494	66.5 499	72.0 496	75.4 507	74.2	69.8 559	62.1 607	03.8 721											
Inict: Dty Cuc. %	13 591	21 144	29,588	38,902	.436 50.529	61 708	.525 69 405	73,518	72 659	76,961											
<																					>

Figure A82 Part Throttle "Calibration" Map" Written to ASCII Files (see Fig A81)

Microsoft ™ Excel displaying the .csv format file.

Figure A84 Compressor Map – Translating from .jpg File

In the Turbo specs screen, set Use Compressor Map to Yes. Then click on the View button

Turbocharger Specs for: TWN-ICTU.RB0	X								
1st Stage Turbocharger Specs	General Turbocharger Specs								
	Throttle Location Blow Through -								
	Max Boost Limit, PSI 15								
	# Turbos/Stages 2 Twin Turbos 👻								
Surge CFM 250	Intercooler Eff, % 50% Quick Accel Air-tov 💌								
Exh Turbine Eff, % 65% Typical 💌	Intercooler CFM Bating 100000 Clc								
Turbine Nozzle Dia, mm 24.89 Clc	Wastegate Is Before Intercoder 🔫								
	Comments								
Force to Boost Conditions Boost. psi Int Temp Exh Pres Cie	Typical "medium sized" twin turbos with wastegate set to 15 psi (30" Hg) With intercooler								
Force These Conditions	N								
Full Compressor Map									
Use Compressor Map									
Help Click on Spec Name of the Value for explanation of spec to) be given here.								
OK Help Retrieve from L	ibrary Save to Library Print								

Fill in the Pressure Ratio Ranges and CFM Flow Ranges specs to tell program how many data points you want to enter for your particular map.

Click on Options, then Show Image for Translating for screen on next page.

Figure A85 Compressor Map - Translating from .jpg File, cont

A new section of screen opens to the right. Click on the File button for a list of options. Click on the Open New Picture File and browse to a graphic image file of the turbo map you want to Translate to the Engine Analyzer program. These are typically .jpg files which you can get from the internet.

Once the image is loaded, you need to define the max limits of the turbo map image. Click on "Locate 0 Flow and 1.0 PR Point" option and then click on that point in the lower left corner of the map. Lines will be drawn for the lower and left boundaries of the map image.

Figure A86 Compressor Map - Translating from .jpg File, cont

After left and bottom limit lines are drawn, click on "Locate Max Flow" option and then click n the right limit of the image. In this case, the right limit of flow is 25 lb/min. Click any place on the vertical 25 lb/min line. The program asks you what is the flow at this line. To convert lb/min t CFM, multiply by 13.1, which is 327.5.

Do the same to identify the Max PR line. Click on the "Locate Max PR" option in the list, then click on the 3 PR line and enter the value of 3. The image below shows the image with boundary lines show on all 4 sides.

Now when you click in the grid to enter an efficiency value, a pink cross hair is drawn on the image so you can precisely read the efficiency value off the image.

